
Introduction

Current market forces are putting pressure on manufacturers to increase flexibility 
and customization.  Whether production is make-to-order or make-to-stock, the 
trend is towards shorter production runs and more frequent product changeovers, 
which increases the need for better production scheduling capabilities. 

Companies whose production costs represent a significant portion of the price of 
their products can gain a source of competitive advantage by creating optimal 
production schedules. Complex manufacturing operations where multiple products 
often share common infrastructure and resources require production schedules on 
a timely and frequent basis.  In addition, plant expansions are very expensive; better 
production schedules often allow companies to increase throughput without 
incurring large capital expenditures, resulting in increased product gross margins.

ERP, production planning, and several dedicated commercial off-the-shelf (COTS) 
solutions exist for production scheduling. However, these solutions i) only provide 
reasonable schedules at a coarse, weekly or monthly level, ii) produce schedules 
that are not optimal and/or require ineffective manual manipulation and/or iii) 
cannot be re-run daily, or ad-hoc, to address immediate issues and priorities. 
Further, while these solutions produce working schedules, they often fail to 
accommodate related constraints that can only be factored in by using a schedule 
evaluation or simulation solution. Examples of such constraints include WIP 
inventory and related storage limitations, sequencing conflicts on common 
machines, or resource-sharing restrictions.
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The vast production planning and production 
scheduling literature includes many 
approaches based on pure optimization, 
simulation, and hybrid simulation-optimization 
methods. Recent surveys identify numerous 
implementations involving discrete event 
simulation approaches, with more than a dozen 
others involving alternative types of simulation.  
Numerous additional implementations involve 
complex mathematics and metaheuristics (i.e. 
designs or strategies to efficiently explore all 
options in order to find near–optimal solutions). 
However, these diverse implementations share 
a common denominator of exhibiting one of 
three conspicuous limitations: either they make 
severe simplifications of the processes they are 
trying to represent, or they only consider 
portions of a complete process, or they do not 
provide an integrated system capacity and job 
sequencing framework.

Existing solution approaches for production 
process scheduling characteristically focus on 
two basic questions:

When should a specific job be scheduled?
What resources should be assigned to 

perform the job?

In many cases, these questions can be 
answered by applying simple rule-based 
mechanisms, such as sequencing tasks by 
Earliest-Due-Date (EDD) or by the magnitude of 
their processing times.  More complex rules can 
be derived by combining two or more simple 
rules into ratios or products, but the basic 
concept remains the same.  

Although appealing for their simplicity and 
intuitive nature, these methods usually 
produce inferior results because they are static 
in nature and tend to ignore relevant attributes 
of the tasks, such as urgency to begin 
production, penalties for tardiness, interactions 
with other tasks, availability of resources to 
perform all the work, changeover and setup 
times and costs, etc.  To address these 
limitations, optimization-based approaches can 
be used.  These methods use mathematical 
programming techniques to find an optimal 
solution to maximize or minimize some metric, 
such as throughput, capacity utilization, 
makespan, or operating cost.

The complexity of most real-world systems 
involves several decisions, including:

How to size a task (i.e., job, batch, run, etc.)
How to assign a task to a production line
How to sequence the tasks on each 

production line

Unfortunately, in high product mix environ-
ments, where product changeovers are 
sequence-dependent, the application of exact 
mathematical optimization methods is imprac-
tical, either because the time to obtain the 
optimal solution is excessive, or because such 
systems are too complex to be mathematically 
formulated.  In these cases, what is needed is a 
combination of mathematical methods with 
metaheuristic solution techniques and, increas-
ingly, simulation modeling approaches.

In response to this need, OptPro from OptTek 
provides a sophisticated production scheduling 
solution approach that combines mathematical 
programming, metaheuristic optimization, and 
simulation to craft optimal or near-optimal 
production schedules in a timely, reliable, and 
effective manner. 
  
The modeling and algorithmic designs 
employed are especially suited to complex 
situations, with a high production volume and a 
high product mix, where sequence-dependent 
constraints, multiple line assignments, scarce 
resources, and tight storage and WIP 
constraints may be present.  Such a design 
structure also proves very effective when a 
major disruption occurs in the plant, and there 
is an urgent need to quickly reoptimize the 
production schedule.
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The OptPro production scheduling approach 
makes use of multiple technologies, either alone or 
in combination, tailored to the situation at hand.  
What every implementation has in common, 
regardless of the individual technologies 
employed, is a technological framework that coor-
dinates and unifies the function of its components.  
This framework can be described as a scheduling 
optimization engine, which draws on a diverse set 
of techniques to obtain an optimal or near-optimal 
production schedule.  These techniques include 
mathematical programming, metaheuristics, and 
the combination of simulation and optimization.  
Figure 1 shows a high-level representation of the 
technology.

Even highly complex production environments can 
sometimes be tractable enough that they can be 
solved with the Core Schedule Optimization alone.  
Examples are operations where production lines 
are independent of each other (i.e., there is little or 

no interaction between production lines), and 
resources such as labor and physical assets are 
primarily dedicated to each production line.  
Most real-world systems, however, exhibit a 
degree of complexity and interactivity that 
makes it impossible to describe them with a set 
of equations or mathematical expressions.  A 
good example of such a system is a dairy foods 
production facility.  While it may be relatively 
simple to optimize the schedule of the filler 
machines and the packaging facility separately, 
the schedules produced without accounting for 
their interactions may introduce conflicts in the 
upstream operations of the process.  Good coor-
dination between processing and packaging is 
critical, so that the scheduling of the pasteuriza-
tion step and the sterilization step, for example, 
are well-synchronized with the scheduling of the 
filling and packaging operations.  To handle 
crucial interacting factors such as these, OptPro 
makes use of a simulation model called the 
Schedule Evaluation Model (SEM) – a “digital 
twin” of the process.  The SEM is a realistic model 
of the production facility, which allows an itera-
tive evaluation of schedules suggested by the 
optimization engine, in a simulation optimization 
sense.  It is important to note that the SEM is only 
as detailed as is necessary to model the effects 
of scheduling on a production process.

Again, this approach is not needed in situations 
where straight-forward rules such as 
First-In-First-Out (FIFO) or Earliest-Due-Date 
(EDD) would suffice.  Instead, it is designed for 
those operations where, as noted, multiple prod-
ucts compete for common resources, such as 
production infrastructure and materials, and 
where an optimal production schedule can drive 
competitive advantage. In general, this 
approach finds application in organizations that 
seek to optimize and automate their plant 
design and production schedule, or to maximize 
the benefit derived from their operational 
processing decisions.  In manufacturing settings, 
improved decision making is enabled by simulta-
neously optimizing scheduling, sequencing, 
line-assignment, capacity, and layout decisions 
to meet forecasted customer demands.  

The following case studies highlight the benefits 
of the OptPro approach.
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Straightforward  Pipe  Insulation
Manufacturing  Case  Study  
without  need  for  a
Schedule  Evaluation  Model

Consider a large construction 
materials company that produces 
pipe insulation products in one of its 
manufacturing facilities. 

Prior to implementing OptPro, the 
company was employing an 
advanced planning and scheduling 
(APS) system that used a set of 
dispatch rules.  While the system 
provided some user-friendly 
capabilities, the complexity of the 
operation had grown in recent years 
to the point that the current system 
was producing schedules that 
required hours of manual “fixing” to 
make them feasible. 

The company produces over a 
hundred different pipe insulation 
products.  Each product is described 
by the type of material, the internal 
diameter, and the thickness of the 
insulation, and is manufactured on 
one or more of several available 
production lines.

SKU

1
2
3
4
5

150
150
75
75
75

1, 2
2, 3

1, 2, 3
1, 2, 3
2, 3

66,000
27,000
90,000
48,000
60,000

8,000
0

4,500
(5,000)

0

Processing
Rate 

(lbs/minute)

Possible
Machine

Assignments

Day’s
Demand

(lbs)

Safety
Stock

Shortfall
(Surplus)

Table 1: Production requirements

The production facility works on a 
24/7 schedule and the company’s 
aim is to schedule 30 days of 
production at a time, with a detailed 
plan for the first 5-7 days and a less 
granular plan for the remaining 23-25 
days. In this example, based on the 
current conditions, a schedule is 
required for a single day of 
production for five products on three 
available production lines.   

The schedule needs to define:

How much of each product must be 
produced each day on each line – i.e., 
what production run size, while 
maximizing total throughput

What is the best sequence of 
product runs on each line to minimize 
changeovers and avoid overtime? 

The production requirements for the 
day are shown as follows in Table 1:
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In this case, the quantity to produce each SKU is the Day’s Demand plus any shortfall 
(or, minus any surplus) in safety stock.  The total quantity to be produced must, 
therefore, meet or exceed 298,500 pounds of finished product (the sum of the five SKU’s 
Day’s Demand).

Additionally, the sequence-dependent changeover times incurred when changing a 
machine from production of one product to another, in minutes is as follows in Table 2:

To avoid paying its operators for overtime, the plant must finish production within 20 
hours.  The additional 4 hours available at the end of the last shift are typically used for 
preventative maintenance and cleaning activities. 

Optimal production schedule for Day 1

The optimal schedule is as follows in figure 2:

Perhaps not intuitively, but optimally, both Products 1 and 3 are split into two batches, 
to be produced on different machines to avoid incurring overtime costs (one of the key 
objectives). The schedule maximizes throughput, resulting in a total production of 
306,500 pounds, and minimizes costs, including changeover costs (240 minutes).  

Table 2: changeover times

Product

1
2
3
4
5

60
180
180
60

60

120
180
180

60
60

120
120

60
60
60

120

60
180
120
120

1 2 3 4 5

Product 1 Product 2 Product 3 Product 4 Product 5

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800 840 880 920 960 1000 1040 1080 1120 1160 1200

Line 1 

Line 2 

Line 3 

Figure 2: Optimal schedule
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Rapid Re-Optimization

However, as a result of unforeseen tool breakages, the scheduler realized this 
schedule cannot be put in practice because of tooling conflicts in resource utilization; 
two batches of the same product cannot now be run in parallel (Product 3 on Lines 1 
and 3), because they each require a mandrel of the same diameter and there is only 
one.  In addition, Products 2 and 4 also share a mandrel, so those two cannot run in 
parallel either (on Lines 2 and 3).

The appropriate tool constraints are easily edited to reflect shared resource conflicts, 
the optimizer is very quickly re-run (a matter of minutes), and a new optimal solution 
is obtained as follows in figure 3:

This new solution avoids the tool conflicts mentioned above.  Although this new 
solution does now incur 60 minutes of overtime on Line 3, it reduces the total 
changeover time by 60 minutes, practically offsetting the cost of overtime with 
revenues realized from additional throughput of 18,000 pounds of finished Product 4.

Given this is a real-world example, the approach illustrated here resulted in an 8% 
increase in throughput compared to a manual approach being used beforehand, with 
an overall 10% cost savings from changeovers and still reduced overtime.

Figure 3: Optimal schedule after rapid re-optimization

Product 1 Product 2 Product 3 Product 4 Product 5

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800 840 880 920 960 1000 1040 1080 1120 1160 1200 12801240

Line 1 

Line 2 

Line 3 
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OptPro was implemented for a dairy processing and packaging plant design and 
equipment manufacturer, with an implementation carried out at a medium-sized dairy 
production facility with one pasteurizer/separator, one sterilizer and six filling 
machines (a simplified schematic of the facility is provided in Figure 4). The facility had 
a difficult time creating a schedule that would produce enough product to meet 
demand, without the need for overtime and without the current corner-cutting on 
cleaning and maintenance.

The challenge was to create a schedule that would:

Minimize the time to produce SKUs – keeping below 100% indicating no need for 
overtime, and allowing time for cleaning & maintenance

Maximize the existing utilization, but keeping below 100% indicating no need for 
additional capacity/infrastructure

Produce a schedule, and be able to reschedule, quickly 

SterilizerCream Storage
/ Dispatch

Filling
and PackagingRaw Milk

Reception

Raw Milk
Storage

Pasteurized
Milk

Storage

Pasteurizer
/Separator

Figure 4: Dairy processing plant schematic
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Demand is specified by 17 SKUs of different 
dairy product types and package sizes.  In the 
plant, raw milk reception occurs daily, with raw 
milk storage silos directly filled by pipes from 
the reception area.  Siloes are then pumped 
through to the pasteurizer/separator where the 
raw milk is separated into pasteurized milk with 
different fat content specifications, and a cream 
byproduct.  The cream is stored until it can be 
dispatched at the end of the day.  Pasteurized 
milk is stored until a filling machine is available, 
and then it is either filled as fresh product, 
mixed with flavoring and filled as flavored 
product, or sterilized and filled as ultra-high 
temperature (UHT) product.  In the final step of 
the process, filling machines fill containers of a 
prespecified size with the appropriate final 
product. A SKU is defined by the combination of 
finished product type and container size.

OptPro first applied a sequencing and 
assignment algorithm to the process at the 
filling step. Four distinct tests were then 
executed, and the time was measured for 
completion, along with the quality of the 
solution in terms of makespan and equipment 
utilization.  The tests and their respective 
quality results are described in Table 3.

In Column 2 of Table 3, the “Type” of test is 
defined as follows:

A: Average:     weekly production is averaged 
over 7 days, such that one-seventh of the 
weekly demand must be completed in each 
day.

M: Makespan minimizing schedule   total 
weekly production must be completed as soon 
as possible.

E: Expanded        the number of SKUs is doubled 
to 34, but the demand per SKU is halved, to test 
the flexibility of the algorithm to larger 
quantities of SKUs, while guaranteeing that a 
feasible schedule exists.

#

1
2
3
4

AE U

A

M
ME

U

M
M

7s
15s
11s
9s

99.1%
99.1%
97.4%

97.4%

95%
96%
85%
85%

Type Obj Time Mksp Util
Thus, if Column 2 contains the abbreviation: 
“AE,” it means that the test is of type “Average, 
Expanded”.  This means that the test involves a 
daily average demand equal to one-seventh of 
the total weekly demand for each SKU, and the 
number of SKUs will be 34, but the demand for 
a SKU will be half that of the original SKU.

Column 3 shows the primary objective(s) of the 
test case, either U = equipment utilization 
(maximized) or M = makespan (minimized).  
Time, in Column 4, reflects the computer run 
time – in seconds – to obtain the best solution.  
Columns 5 and 6 display the resulting values of 
Makespan and Utilization, respectively.  These 
are all expressed as percentages.  Thus, 
makespan is reported as a percentage of the 
maximum allowable production time (i.e., 1,440 
minutes per day for tests involving an “Average” 
production requirement, and 10,080 minutes 
per week for tests involving a “Makespan- 
minimizing” production requirement).

The results indicate that all schedule options 
were viable, and all executed quickly. None 
showed Utilization > 100%, indicating no need 
for additional capacity. All showed Makespan < 
100%, indicating no need for overtime, and 
leaving time for cleaning and maintenance.

Table 3: Evaluation tests
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It currently takes an experienced 
process engineer over five hours to 
obtain a good scheduling solution 
for the week.  Part of the reason is 
that a filler schedule must consider 
the coordination between the filler 
schedule and the activities at the 
upstream equipment – namely the 
sterilizer and the pasteurizer.  If 
these are not in step with the fillers, 
then the filler schedule can be 
greatly disrupted by long idle times 
or costly and untimely changeovers. 
Although OptPro produced 
excellent solutions for the fillers in a 
very short computational time, it was 
necessary to verify that the 
upstream equipment could also be 
scheduled in a way that minimized 
disruption of the fillers’ schedule.  
This proved challenging, especially 
in the case of the sterilizer whose 
operation is more constrained in 
terms of buffer capacity - whereas 
the pasteurizer relies on large, 
relatively non-expensive storage 
tanks, the sterilized product must 
either be fed directly to the filler, or it 
must be stored in relatively small, 
expensive aseptic tanks.

To address this issue, a detailed SEM 
of the dairy plant was modeled.  
After initial testing, it was necessary 
to modify the initial solution 
generator in the OptPro algorithm to 
eliminate much of the reliance on 
randomization.  The new solution 
construction method then selected 
SKU sizes and filler machine 
assignments in close coordination 
with the sterilizer to avoid periods of 
idle time at the fillers, ensure 
continuous operation of the 
sterilizer, and minimize changeovers. 
This new approach was successful 
and although the total run time for 
each of the test cases described 
earlier (see Table 1) now took 
between 1 and 4 minutes, the 
schedule options were again all 
viable and this increase in time still 
represents a great improvement 
compared to the 5 hours it currently 
takes the engineer.

Need for Schedule Evaluation
Model or SEM (simulation)
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A  High-Volume
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Operation  with  
Schedule
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Model
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The final case refers to a high-volume printing 
operation.  Customers upload a design and then 
order products such as photobooks, calendars, 
and other personalized items from the company’s 
online store.  The company receives several 
thousands of orders each day during peak periods.  
Each different item in an order is assigned a 
production ticket ID.  Thus, some orders may be 
associated with a single production ticket, and 
some with several tickets.  On average, the 
company generates over 50 thousand production 
tickets per day.

The company provides the customer with a 
planned ship date for each order, determined by 
the type and number of associated production 
tickets.  For example, an order that contains 
multiple and complex types of items may be 
assigned an expected ship date that corresponds 
to 5 workdays after the order was received, 
whereas an order with a single, and simple, item 
might be assigned a ship date corresponding to 
only 2 days after the order was received.  The 
primary goal of the company is to maximize 
on-time-shipment, measured as the percentage of 
orders that ship on or before the planned ship date.

Current scheduling is, to a large extent, 
performed following a First-Come-First-Serve 
(FCFS) approach.  The only “intelligence” added 
to FCFS is that for a given backlog of production 
tickets, similar items are processed together as 
batches, to minimize changeovers.  By and large, 
the biggest bottleneck in the process is the 
printing step which occurs first for most products. 
This step involves both the longest processing 
times and the longest changeover times of any 
step in the process.  As a result, jobs can be 
sequenced at the printers, ignoring any of the 
steps occurring downstream - the problem is 
then effectively reduced to a sequencing 
problem.  A Schedule Evaluation Model (SEM) of 
the plant is used to simulate the optimal 
sequence and collect detailed metrics. The SEM 
models each step of the process.  

A high-level process of the plant is depicted in 
the flow chart of Figure 5.  The multiple machine 
sequencing problem with sequence-dependent 
setups can likewise be formulated with an 
objective that can be expressed as minimizing 
the number of tardy jobs, such that a complete 
formulation can be computed.   

Figure 5: High level flow chart of printing process
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The solution approach involves a unique search procedure with a “greedy” heuristic 
construction method (i.e., the locally optimal choice is made at each stage) and 
efficient neighborhood search.  The greedy constructor is based on the Apparent 

Tardiness Cost with Setups (ATCS) rule, applied to the total weighted tardiness on a 
single machine where jobs are sequenced in descending order of a priority index.

  
To illustrate this method, consider a set of 5 jobs as shown in Table 4.

Setup times for these products are shown in Table 5.

The priority indexing calculations and resulting sequence for jobs yet to be selected 
at each time interval are shown in Table 6.

Job

1
2
3
4
5

40
10
40
50

30
8
2
3
5

7
100
120
170
190

80

Proc. Time Weight Due Date

Setup Time

0
1
2
3
4
5

9

9

9
10
14

13

6

10
7
13

7

8

11

8
12

12

8

13

20

13

11

12

6

7
6

1 2 3 4 5

Table 4: Jobs data

Table 5: Setup times, including initial setup

t

0
46
85

102
159

0.01565
0.02051

0.02822 0.01231
0.00723
0.02653

0.00410
0.00141
0.00232
0.00030
0.00231

0.00177
0.01155
0.00381
0.01229

2
1
3
5
4

1 2 3 4 5 Sequence

Table 6:  Applying ATCS indexing to the set of 5 jobs
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The total weighted tardiness metric for this sequence is shown in Table 7. This method 
compares favorably to other well-known dispatch rules.  It outperformed an 
Earliest-Due-Date (EDD) method by 21% (total weighted tardiness = 204), shortest 
processing time by 33% (total weighted tardiness = 240) and does only 1% worse than 
Moore’s algorithm (total weighted tardiness = 159).  The latter is well known as an 
algorithm that minimizes the total number of tardy jobs, but it cannot directly address 
changeovers or weighted tardiness metrics.  The fact that ATCS does comparably well 
leads us to the conjecture that ATCS is well-suited as an initial sequence constructor 
for the case of minimizing the total number of tardy jobs and weighted tardiness.

Implementation complexity

In our implementation, the ATCS 
rule had to be modified in two 
fundamental ways in order to: (1) 
handle multiple machines; and (2) 
appropriately time the release of 
“related” items.  The first modifi-
cation is obtained by changing the 
ATCS indexing function to repre-
sent the time at which the first 
feasible machine will become 
available.  (Some machines may 
not be able to process a job, so 
they are not feasible for that job.)  
The second modification was 
necessary because of a process 
particularity: the company 
consolidated all items in an order 
into a single shipment.  That 
meant that, oftentimes, items with 
significantly different processing 
times had to be shipped together.  
In order to limit WIP inventory, the 
release of items in a given 

customer order with much shorter 
processing times had to be timed 
in such a way that they would 
finish processing at approximately 
the same time as those with 
longer processing times.

For this implementation, OptPro 
again used a Schedule Evaluation 
Model (SEM) to evaluate solu-
tions.  In this case, the SEM 
models the full plant, which 
provides a more precise measure 
of the performance of the system 
than the estimated factors in the 
ATCS (modified to manage multi-
ple machines).  This proved 
essential because WIP inventory 
can build up in different areas of 
the plant, causing wait times that 
are not addressed in the ATCS 
indexing rule.   

Table 7:  Computing total weighted tardiness

Sequence

2
1
3
5
4

6
9
12
6
12

6
55
92

109
172

46
85
102
159
212

0
5
0
0
42

0
35
0
0

126

Setup Time Start Time Completion Tardiness

Total

Weighted
tardiness

161
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Due to the large volume of 
incoming orders, the 
procedure is repeated at 
various intervals during the 
day, or whenever a major 
disruption occurs in the plant.  
This is necessary to avoid 
excessively large volumes of 
backlogged orders, which 
ensures that the optimization 
runs quickly enough, and 
produces high-quality results.  
On the other hand, running the 
procedure too often makes it 
impossible for enough items to 
be batched into large enough 
chunks.  There are certain 
batch processes in the plant, 
where producing a single item 
requires the same processing 
time as processing a batch of 
50 items. Thus, the “chunking” 
step is critical in ensuring the 
efficiency of the solution by 
creating batches of similar 
jobs (i.e., jobs with 
characteristics similar enough 
that there is no changeover or 
setup time incurred between 
them).

Based on preliminary testing 
and simulations conducted on 
historic data, during normal 
months of operation (January 
through September), the 
OptPro implementation 
typically improves on-time 
shipment of customer orders 
from a current average of 91% 
to between 98% and 99%.  
However, the solution is most 
valuable during the peak 
holiday months between 
October and the end of 
December, when the current 
on-time shipment metric is only 
75%.  During these periods, the 
solution approach typically 
yields on-time shipment 
performance between 92% 
and 96% (a significant 
improvement of 23%  to  28%).  
These outcomes are expressed 
as ranges due to variability in 
the results at different time 
intervals, determined by the 
average complexity and 
volume of the orders in the 
backlog at different times.
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The combination of custom mathematics, 
metaheuristic-based algorithms, and simulation 
evaluation models has proven very effective in a 
wide variety of complex production scheduling 
applications – where ERP, planning and COTS 
scheduling solutions are challenged in handling 
the complexity and other requirements.  

The efficiency and quality of solutions obtained 
by the OptPro method makes it well-suited for 
handling problems not only in strategic 
production design and planning situations, but in 
real-time, operational scheduling.

Often, effective scheduling solutions require a 
combination of mathematical methods with 
metaheuristic solution techniques coupled with 
simulation modeling approaches; OptPro’s 
ability in this regard makes it an ideal solution for 
many complex scheduling challenges.

OptPro also proves useful for re-optimizing a 
schedule in the event of a major disruption in 
production (e.g., a machine breakdown).  This 
re-optimization has a crucial role in many 
settings, where the usual reaction is to continue 
with the planned schedule and “work around” the 
disruption, which often leads to increased 
operating costs and excess product waste.  By 
enabling the schedule to be re-optimized in a 
matter of seconds, the disruption and its 
estimated duration can be addressed directly in 
the new schedule – thus minimizing these 
negative effects – and production can resume 
immediately. 
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